A Pitagorasz-tétel vagy Pitagorasz tétele az euklideszi geometria egyik alapvető állítása. Felfedezését és első bizonyítását az i. e. 6. században élt matematikusnak és filozófusnak, Püthagorasznak tulajdonítják, pedig indiai, görög, kínai és babilóniai matematikusok már ismerték a tételt jóval Püthagorasz előtt, és a kínaiak bizonyítást is adtak rá.
Szamoszi Püthagorasz ión származású filozófus és matematikus volt, a püthagoreus filozófiai iskola megalapítója és létrehozója. Tanítványaival máig ható, fontos eredményeket ért el a csillagászatban, a matematikában és a zeneelméletben is.
„A számok atyja” néven is emlegették, mert a püthagoreusok számára a legfontosabb (és tulajdonképp az egyetlen) tudomány a matematika volt: azt tanították, hogy minden dolog kulcsa a számokban rejtőzik. Életét kevéssé ismerjük, bár már életében legendák és mítoszok övezték. Ezek terjesztéséhez a püthagoreusok is hozzájárultak, mivel afféle félistenként tisztelték mesterüket.
A tétel
Bármely derékszögű háromszög leghosszabb oldalának (átfogójának) négyzete megegyezik (egyenlő) a másik két oldal (a befogók) négyzetösszegével. Tehát: ha egy háromszög derékszögű, akkor a leghosszabb oldalára emelt négyzet területe a másik két oldalra emelt négyzetek területének összegével egyenlő.
A szokásos jelölésekkel (c az átfogó, a és b a befogók):